Nanopartikel als Träger zum Transport von Arzneistoffen über die Blut/Hirn-Schranke

> **materials valley** Hanau/Wolfgang 21. Februar 2013

JÖRG KREUTER INSTITUT FÜR PHARMAZEUTISCHE TECHNOLOGIE JOHANN WOLFGANG GOETHE-UNIVERSITÄT FRANKFURT



## DRUG TRANSPORT ACROSS THE BLOOD-BRAIN BARRIER WITH NANOPARTICLES

- Definition of nanoparticles
- Brain delivery with nanoparticles
- Chemotherapy
- Toxicology
- Mechanism
- Attachment of targeting ligands



## **DEFINITION OF NANOPARTICLES**

Nanoparticles are solid polymeric particles of a size between 10 and 1000 nm into which drugs or biologically active materials are incorporated, surface adsorbed or chemically bound.



# NANO-PARTICLES

#### **PETER SPEISER**



# DRUG TARGETING

#### PAUL EHRLICH



# STRUCTURE OF THE BLOOD-BRAIN-BARRIER

Scanning Electron Micrograph

Cast of Rat Thalamus

Bar =  $50 \mu m$ 





## BRAIN DELIVERY WITH NANOPARTICLES

## **Type of Nanoparticles Used**

Poly(butyl cyanoacrylate)



- Particle size : 230 250 nm
- Monolithic particles



#### **EM Freeze Fracture of Nanoparticles**











#### Mouse Tail-Flick Analgesia Test



#### Maximally Possible Effect



## **ANALGESIC (ANTINOCICPETIVE) EFFECTS IN MICE – TAIL FLICK TEST**

#### **Maximally Possible Effect**

#### **POST DRUG LATENCY – PREDRUG LATENCY**

% MPE =

· 100

#### **CUTOFF TIME – PREDRUG LATENCY**

#### **ANALGESIC (ANTINOCICPETIVE) EFFECTS IN MICE – TAIL FLICK TEST**



DRUGS DELIVERED ACROSS THE BLOOD-BRAIN BARRIER WITH NANOPARTICLES

- KYOTORPHIN (dipeptide)
- LOPERAMIDE
- TUBOCURARINE
- MRZ 2/576 AND MRZ 2/596 (NMDAreceptor antagonists)
- DOXORUBICIN



#### **Doxorubicin** Plasma Doxorubicin Doxorubicin + Polysorbate 80 Doxorubicin-NP Doxorubicin-NP + Polysorbate 80 Drug level [µg/g] 0 -Time [min]

#### **Doxorubicin Heart**



#### **Doxorubicin Brain**



## LARGE PEPTIDES

NGF, MW ~ 130 kDa rhoGin MW ~ 21 kDa



#### Latent Period in the Passive Avoidance Test [sec]



#### Mean latent period (seconds ± m)

Group 1 passive control Group 2 control of amnesia Group 3 NGF (5 µg/mice, i.v.). Group 4 NGF (5 µg/mice mixed with 1 % polysorbate-80 solution, i.v.). Group 5 NGF (5 µg/mice, adsorbed on nanoparticles, i.v.) Group 6 NGF (5 µg/mice, adsorbed on nanoparticles coated with polysorbate-80, i.v.).

- Statistically reliable difference from group 6 p < 0.05</li>
- Statistically reliable difference from group 6 p≤0.01

## Weighted tremor score [%]



# CHEMOTHERAPY

### **CHEMOTHERAPY**

#### • **Preparations:**

- 1) Untreated control,
- 2) Blank NP coated with polysorbate 80 (NP+PS),
- 3) Doxorubicin in saline (DOX),
- 4) Doxorubicin in 1% polysorbate 80 solution (DOX+PS)
- 5) Doxorubicin bound to NP (DOX-NP),
- 6) Doxorubicin bound to NP coated with polysorbate 80 (DOX-NP+PS).



### **CHEMOTHERAPY**

- 101/8 glioblastoma-bearing animals
- 6 groups (n = 10 26)
- Intravenous injection into the tail vein
- 1.5 mg/kg doxorubicin
- Day 2, day 5, and day 8.



# Histological evaluation of brain from rats with 101/8 glioblastoma



Untreated control: a pattern similar to human malignant gliomas, with diffuse growth and significant amounts of necrosis

#### EFFICACY OF DOX PREPARATIONS IN RATS BEARING INTRACRANIAL 101/8 GLIOBLASTOMA: CONTROL: NP+Ps: DOX+Ps: X DOX-NP: DOX: DOX-NP+Ps: A





## Histological evaluation of brain from long-surviving rats with 101/8 glioblastoma



Absence of tumour Gliotic cerebral scar at the cite of implantation Chemotherapy of intracranial 101/8 glioblastoma in rats using doxorubicin loaded into PLGA nanoparticles: Effect of Pluronic<sup>®</sup> F68 coating



# TOXICITY

# Histological evaluation of brain from rats with 101/8 glioblastoma



Long-term surviving animals post treatment with Dox-NP+Ps No evidence of neuronal apoptosis

Steiniger S. Int. J. Cancer <u>109</u> (2004) 759 - 767.

## Histology: Myocardium



#### Histology: Testes



DOX – day 30





PBCA+Ps80 - day 15

DOX-PBCA+Ps80 - day 30

#### Mechanism of Nanoparticle Transport Across the BBB Using Nanoparticles

- 1. A general toxic effect
- 2. Inhibition of Pgp
- 3. Enhanced diffusion through adsorption at the luminal surface of the endothelial cells
- 4. General fluidisation of the endothelial cells by surfactants
- 5. Opening of the tight junctions
- 6. Endocytosis
- 7. Transcytosis
- 8. A combination of above mechanisms



# Mechanism of Nanoparticle Transport Across the BBB Using Nanoparticles

## **Endocytosis/Transcytosis**









Schematic structure of ApoE-modified NeutrAvidin-PEG-nanoparticles



#### **Human Serum Albumin Nanoparticles**



#### Analgesic effect of loperamid-loaded albumin-ApoE-NP







DB 8 CUI 648\_008.tif Cortex Nr.8 Print Mag: 12600x@ 150mm 13:42 01/31/08 Microscopist: DB

2 microns HV=75.0kV Direct Mag: 12000x CUI

Transmisssion electron microscopical picture of a brain cortex blood vessel of a SV 129 mouse 30 min after intravenous injection of albumin nanoparticles with covalently bound apolipoprotein E

Transmisssion electron microscopical picture of a brain cortex blood vessel of a SV 129 mouse 30 min after intravenous injection of albumin nanoparticles with covalently bound apolipoprotein E



DB 8 CUI 648\_008.tif Cortex Nr.8 Print Mag: 12600x@ 150 mm 13:42 01/31/08 Microscopist: DB

2 microns HV=75.0kV Direct Mag: 12000x CUI



DB 8 CUI 648\_010.tif Cortex Nr.8 Print Mag: 39400x @ 150 mm 13:44 01/31/08 Microscopist: DB

500 nm HV=75.0kV Direct Mag: 40000x CUI

Transmisssion electron microscopical picture of a brain cortex blood vessel of a SV 129 mouse 30 min after intravenous injection of albumin nanoparticles with covalently bound apolipoprotein E

#### Co-injection experiments with lanthanum-III-nitrate showed:

- The tight junctions in the brain did not open.
- The nanoparticles were not transported through the tight junctions.







DB 8 CUI 648\_014.tif Cortex Nr.8 Print Mag: 6120x @ 150 mm 13:50 01/31/08 Microscopist:DB

2 microns HV=75.0kV Direct Mag: 6000x CUI

# ATTACHMENT OF TARGETING LIGANDS



#### Analgesic Effect of Loperamid-Loaded HSA-Apo-A-1-NP and HSA-Apo-B-100 Nanoparticles





#### Analgesic Effect of Loperamid-Loaded Nanoparticles with Covalently Bound Anti-Transferrin-Antibodies

MPE of loperamide in mice after injection of nanoparticles with covalently attached antibodies:

**Ox26 o** 

R17217 •

IgG2a ▼



#### Analgesic Effect of Loperamid-Loaded Nanoparticles with Covalently Bound Transferrin

MPE of loperamide in mice after i.v. injection of NP with covalently attached transferrin (50.85-fold •

or 76.2-fold molar excess ○ of 2-iminothiolane) or with a covalently attached IgG2a antibodies ▼.



#### Analgesic Effect of Loperamid-Loaded Nanoparticles with Covalently Bound Insulin or Anti-Insulin-Antibodies

MPE in mice after i.v. injection of covalently attached IgG antibodies **Covalently attached 29B4** antibodies • (grey) **Covalently attached** insulin **▼** (grey) **Pre-injection of a 29B4** solution, 30 min before injection of NP with attached insulin ▼ (black)



## COMMERCIALLY AVAILABLE NANOPARTICLES

 Abraxane<sup>®</sup>
Paclitaxel-loaded albumin NP Abraxis Oncology, Los Angeles, USA

# CONCLUSIONS



- Polysorbate 80-coated nanoparticles (DOX-NP+PS) represent a very promising preparation for the delivery of drugs across the blood-brain barrier.
- A high incidence of tumour cure was observed in the extremely aggressive glioblastoma 101/8 with polysorbate 80-coated doxorubicin nanoparticles.
- Histologically there were no indications of neurotoxicity

# ACKNOWLEDGEMENTS

- INTAS, Brussels
- Deutsche Forschungsgemeinschaft
- **BMBF**
- Familie Sutrup
- Sicor, Rho, Italy



### ACKNOWLEDGEMENTS

SEBASTIAN STEINGER KLAUS LANGER KERSTIN MICHAELIS SEBASTIAN DREIS TELLI HEKMARTARA

KATRIN D. GEIGER HAGEN VON BRIESEN J. W. Goethe-Universität Frankfurt

J. W. Goethe-Univ. Z. Zt. Univ. Leipzig Fraunhofer Inst. Biomed. Eng., St. Ingbert

**SVETLANA GELPERINA** 

ALEXANDER S. KHALANSKY RENAD N. ALYAUTDIN DAVID BEGLEY RAINER MÜLLER Nanosytem Ltd., Moscow

Institute of Human Morphology, Moscow Sechenov Medical Academy, Moscow King's College London Freie Universität Berlin